26th Annual Energy Generation Conference

Humidity Control for Coal / Lignite Boilers

Jeff Bossong - Humidity to Optimization

Objective of Presentation

- > Humidity Definitions
- > Humidity Sensor Obstacles
 - Sampling & Temperature
 - High Particulate Operation
 - Accuracy & Maintenance
 - Corrosion
 - Cost
 - Software & Control Systems

Objective of Presentation

- > Humidity Sensor Applications at Energy Plants
 - Locations
 - Benefits

Humidity Definitions

- > % Volume
 - Concentration of water in gas stream
 - Volume of water divided by total volume
- > Absolute Humidity (g/m3)
 - Weight per volume measurement
 - A constant conversion (.12452 at 1 atm) to concentration at constant temperature and pressure

> Water Vapor Pressure

- Equation 1 Vapor Pressure Pd = (1-(0.0001*(SORT((0.1*T)+1)+4)))*461.51*(T+273.15)*F*0.00001 where)
 - F = Absolute Humidity (g/m3) H2O Reading Pd = Water Vapor Pressure (hPa)

 - T = Dry Bulb Temperature (°C)

> Saturation Vapor Pressure

- Water vapor pressure exerted at 100% volume at a given temperature

Humidity Definitions

- > Relative Humidity
 - Water vapor pressure divided by the saturation vapor pressure
- > Dew Point Temperature
 - Temperature in which water will condense from a gas stream
- > Wet Bulb Temperature
 - The lowest temperature an object can be cooled to by the process of evaporation
 - Tw = Td 755 (Ps-Pd) / 0.5 P where 0.5 is a constant based on the psychrometer used

Obstacles

> Particulate

- Loading high before APC equipment
- Sample pumps required at high temperatures
- Compressed air purge and maintenance
- > Temperature & Sampling
 - Electronics will degrade at high temperatures
 - Conventional RH substrate sensors lose accuracy as temperatures rise above 212F
 - Sampling Required

Obstacles

> Accuracy

- High accuracy required for control
- High accuracy required for sensitivity (tube leaks)
- A <u>major reason</u> why humidity sensors aren't common in power plant operations
- > Corrosion & Fouling
 - Sulfuric acid mist
 - Chlorides (Hg control)

Technologies

> Polymer

- Relative humidity sensors (function of temperature and humidity)
- Measure capacitance or resistance across substrate
- Secondary measurement
- Main issues are accuracy, unresponsive in high temperature, substrate fouling
- Frequent calibration in harsh environments

Technologies

> Dew Point

- Control temperature of sensor (chilled mirror) to achieve condensation
- Secondary measurement
- Main issues are particulate, other compounds condensing (H2SO4 condenses before moisture), not suitable for high humidity environments
- > Infrared
 - Specific IR frequency is absorbed by water
 - Direct measurement
 - Main issue is particulate and maintenance

H2O Technology

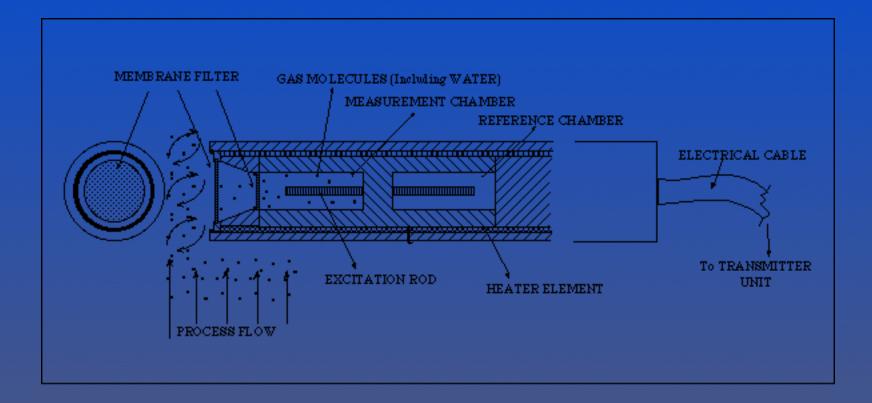
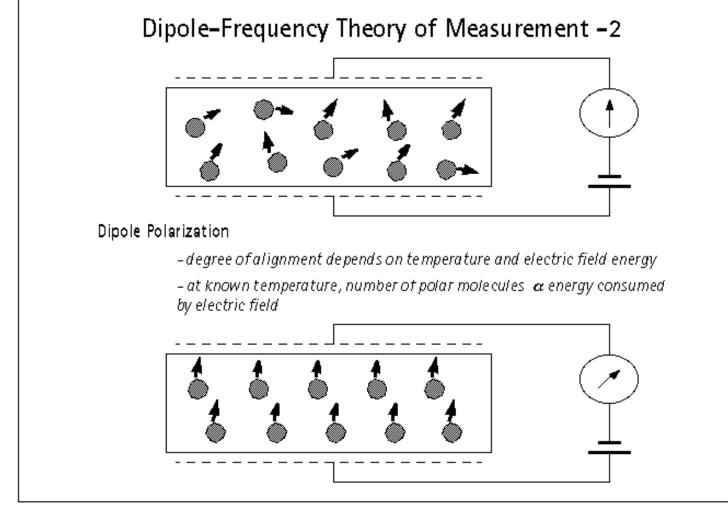
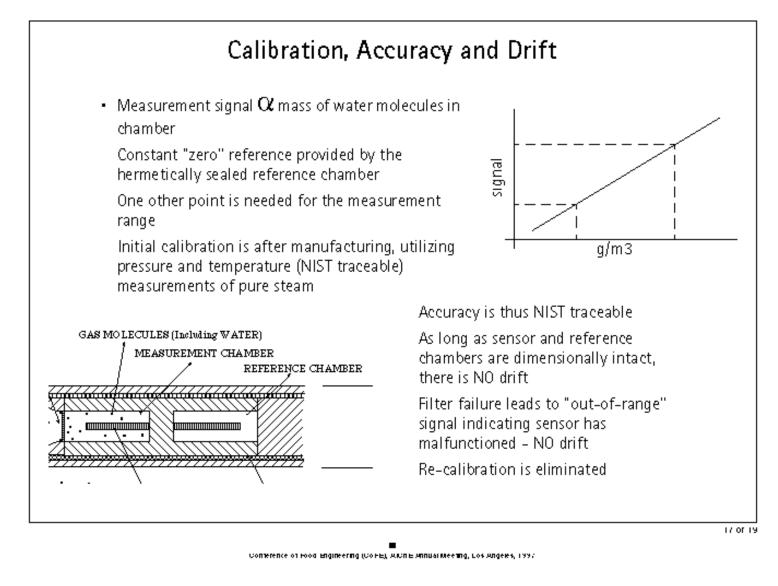



FIG.3-PROBE SCHEMATIC

Energy Generation Conference, Jan 25-27, 2005 Dipole Measurement


DEVCON

Сописание от ноод Engineering (Соне), Акте илицаниеетод, сок илдееж, 1997

Energy Generation Conference, Jan 25-27, 2005 Calibration

DEVCON

Particulates

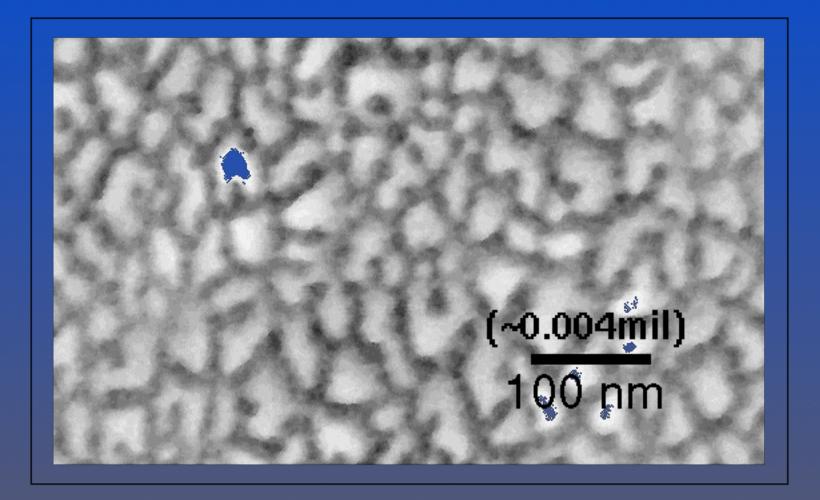


FIG. 4-ELECTRON MICROSCOPE MAGNIFIED SURFACE OF MEMBRANE FILTER

Corrosion & Installation

> Corrosion

- Stainless Steel & Inconel Probe
- Heated Probe (Fixed Above Process Temp.)
- NEMA 4 Enclosure
- > Installation
 - Attach to 4 inch ANSI Port
 - 110 V Power
 - 15 Amp clean power
 - 4..20 mA signal

Accuracy Comparison

Table 1: Accuracy Differences

Temperature	Absolute Humidity	Relative Humidity	Dew Point
325 C	10 % (80 g/Nm3)	0.2% RH	62.2 C
325 C	11.8% (95 g/Nm3)	0.2% RH	66.1 C
100 C	10 % (80 g/Nm3)	13.6 % RH	52.2 C
100 C	11.8% (95 g/Nm3)	16% RH	55.8 C

Moisture Variations

- > Fuel Moisture
- > Unit Load
- > Ambient Moisture
- > Tube Leaks
- > Soot Blow (steam soot blows)
- > Scrubber Moisture
- > Baghouse & Air Heater Leaks
- > A combination of the listed variables can change moisture by as much as 10% (unlikely though)

Coal Plant Locations

> Economizer Outlet

- Fuel moisture feedback
- Heat rate calculations (Input / Loss Methods)
- Tube leak detection
- Soot blower feedback
- Process Conditions
 - 1. 600 700 F process temperature
 - 2. 0 to 401.54 g/Nm3
 - 3. 0 to 50% by volume

Coal Plant Locations

- > Dry Scrubber Outlet
 - Lime optimization
 - Fixed approach to saturation control
 - Baghouse protection
 - Process Conditions
 - 1. 200 F Probe Temperature Setpoint
 - 2. 0 to 401.54 g/Nm3
 - 3. 0 to 50% by volume
 - Design based on approach to saturation

Coal Plant Locations

> Dry Scrubber Outlet

- Dewpoint equations
- Equation 1 Vapor Pressure

Pd = (1-(0.0001*(SQRT((0.1*T)+1)+4)))*461.51*(T+273.15)*F*0.00001 where

- F = Absolute Humidity (g/m3) H2O Reading
- · Pd = Water Vapor Pressure (hPa)
- T = Dry Bulb Temperature (°C)

Equation 2 - Dewpoint Temperature

DP = (234.175 * LN(Pd / 6.1078))/(17.08085 - LN(Pd / 6.1078)) where

DPc = Dew Point Temperature (°C)

Equation 3 - Temperature Conversion to Fahrenheit (DPf) (9/5)DPc + 32 = DPf

Coal Plant Locations

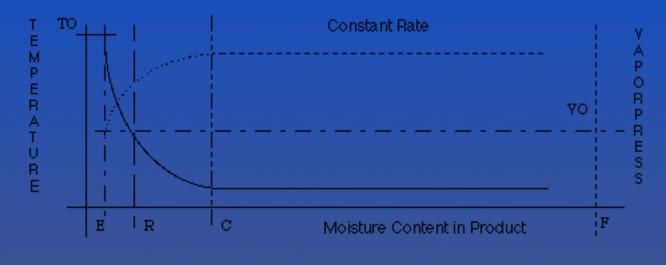
Table 2: Summer Ambient Data

Time of Day	Dry Bulb Temperature (F)	Dewpoint Temperature (F)	% Volume
Noon	91	70	2.3
2:00 AM	72	55	1.3

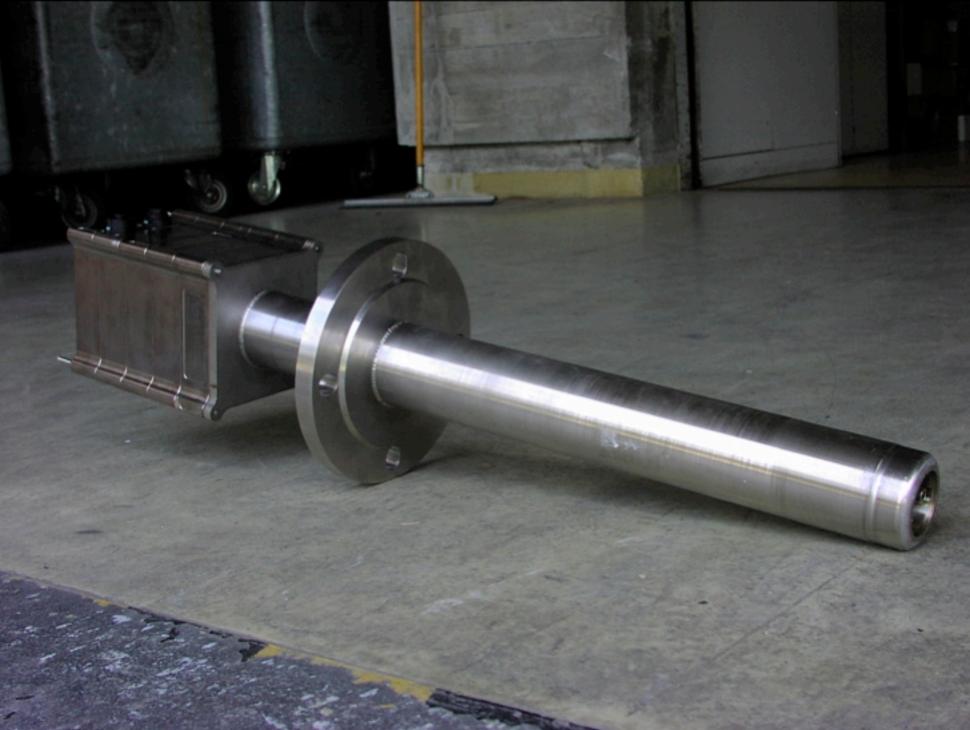
Coal Plant Locations

Table 3: Dew Point Change Based on Ambient Air Conditions

% Volume	Dry Bulb Temperature (F)	Dew Point Temperature (F)
13	199 F	135.3
14	199 F	138.2

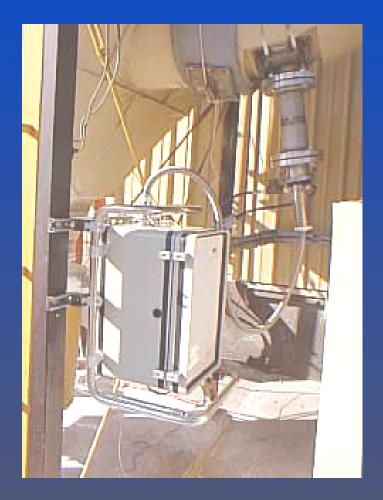

Coal Plant Locations

- > Exhaust Stack
 - Improved environmental reporting
 - Extractive CEM systems
- > Baghouse Protection
 - Inlet humidity more desirable
- > Mercury Control
 - Carbon injection lower temperature


Coal Plant Locations

- > Pulverizer Control
 - Coal dryer
 - Vapor pressure differential
 - Fuel optimization & selective bunkering
 - Upset conditions

Drying Curve



Installations

Installations (cont.)

Open Discussion & Questions

- > Plant Applications
 - Duct Installations
- > Plant History with Humidity Sensors